

FBSNG Overview

Jim Fromm, Krzysztof Genser, Tanya Levshina, Igor Mandrichenko

Farms and Clustered Systems Group, Computing Division, Fermilab

Acknowledgements

FBS developers:

- Mark Breitung
- Marilyn Schweitzer

FBS users and FBSNG testers:

- Antonio Wong Chan (academia Sinica, Taiwan, CDF collaboration)
- Yen-Chu Chen (academia Sinica, Taiwan, CDF collaboration)
- Thomas Las (Manooka, IL Junior High School)
- Miroslav Siket (academia Sinica, Taiwan, CDF collaboration)
- Heidi Schellman (northwestern university, Illinois, D0 collaboration)
- Steve Wolbers (Fermilab, CDF collaboration)
- Ping Yeh (academia Sinica, Taiwan, CDF collaboration)

History and Status

- FBS project goals
 - Replace CPS batch in PC farms environment
 - Develop a farm batch system for file-based parallel data processing style adopted for RunII
 - Do not preclude even-based parallelism
- Milestones
 - Spring 1998
- initial FBS design, first working prototypes
- Fall 1998
- first production users (E871)
- Spring 1999
- review by CDF, D0

Fall 1999

- FBS v2.2
- Fall 1999
- beginning of FBSNG project

July 2000

- FBSNG v1.0 released
- Currently FBSNG is installed on:
 - Fixed target farm fnsfo
 - CDF farm
 - NIKHEF (D0 collaborators)

FBSNG Project Goals

Immediate

- Stop using LSF as scheduler and job storage
 - Reduce maintenance and support costs
 - Avoid possible scalability problems
- Release first version of FBSNG early
 - "Do not brake anything!"
 - Preserve as many features as reasonably possible
 - Add few fundamental features
 - Abstract resources
 - Customizable scheduler
 - Basis for evaluation and future development

Long-term

- Having FBSNG as integral product creates possibilities for future development
 - Dynamic re-configuration
 - Further development of resource management
 - Integration with FIPC
 - Open system (API)

FBS Design (Big Picture)

- LSF is used for
 - Scheduling
 - Job storage
 - Some resource management

FBSNG Design (Big Picture)

BMGR functions:

- Scheduling
- Resource management
- Job storage
- Communication with API clients

FBS Concepts: Farm Model

FBS Concepts: Job Consists of Sections

What is new: Resources

- Global resources
 - Hosted by whole farm
 - Available on any node
 - Examples:
 - Disk space on NFS server
 - Network bandwidth
- Local resources
 - Hosted by individual nodes
 - Available only on the node
 - Examples:
 - CPU
 - Local disk
 - Tape drives
- Node attributes
 - Unlimited local resources
 - Examples:
 - Special software installed
 - Version of OS
- See also http://www-isd.fnal.gov/fbs/FBS2/FBSNG Resources.htm

FBS Resources Management

- Process type per task or project
- Queue statically associated with process type and resources
- Therefore, queue per task or project
- Per-node perprocess type quotas

FBSNG Resource Management

- Process type per task or project
- Soft association between queue and process type (user can override)
- User can request additional resources
- Queue is more of a scheduling than resource management entity
- Generic queues
- More flexibility for users
- Only per-process type resource quotas

FBSNG Users Interface

- Job control
 - Submit jobs can be submitted from any node of the farm
 - Monitor status
 - Kill/cancel
 - Hold/release
 - History
 - E-mail notification
- Farm node status
- Resource utilization statistics
- Scheduler status

FBSNG: Example of Job Description File (JDF)

SECTION Stage First section: pre-stage data

QUEUE=IO_Q Queue to submit to

EXEC=stage.sh VSN123 /stage01 Command to execute

NUMPROC=1 1 process

SECTION Reconstructor Second section: reconstruction

QUEUE=Long Q

EXEC=reco123.sh /stage01 /stage02

NUMPROC=10 10 processes

DEPEND=done (Stage) Only if pre-staging succeeds

PROC_RESOURCES=disk:5 Linux Worker 5GB of local disk, Linux, Worker node

SECTION Clean-up Emergency clean-up section

QUEUE=Short Q

PROC_TYPE = Light Override default process type

EXEC=clean.sh /stage02 VSN123

NUMPROC=1

PRIO_INC = 5 Run at higher priority

DEPEND=failed (Reconstructor) Run only if reconstructor fails

FBSNG Batch Process Environment

- **Environment Variables**
 - FBS JOB ID
 - FBS_SECTION_NAME
- FBS_JOB_SIZE number of processes in the section
- FBS_PROC_NO logical process id (1...FBS_JOB_SIZE)
- FBS_SCRATCH scratch directory created for the process
 - HOME

- home directory
- Current working directory is HOME
- Stderr, stdout as specified in JDF
- Unique UNIX session ID

User Interface: What is old?

- Obsolete:
 - JDF END_TIME field
 - "move" command (replaced with "cprio")

User Interface: What has changed?

- "farms" -> "fbs", "fbsng" synonyms
 - e.g. "farms submit" -> "fbs submit"
- Jobs can be submitted from any farm node
 - Submit a job from another job
- JDF:
 - BEGIN_TIME -> HOLD_TIME, time specification format
 - Absolute: hold till noon tomorrow
 - Relative: hold for 10 minutes
 - JOB_STDOUT -> SECT_STDOUT
 - Unprotected directory required
 - "slog" command
 - LOCAL_DISK -> PROC_RESOURCES
 - e.g. "LOCAL_DISK=5" -> "PROC_RESOURCES = disk:5 tape:1"
- Section ID
 - Main.1234 -> 1234.Main

User Interface: What is new?

JDF:

- PROC_TYPE override Queue default
- PROC_RESOURCES resources per process
- SECT_RESOURCES resources per section
- PRIO_INC submit the section at higher priority

New commands:

- Is, Ij list jobs, sections (scheduling parameters)
- cprio change section priority
- slog show section log
- hold/release job/section/queue
- ptypes, resources statistics on process types, resources

See v1.0 Release Notes

http://www-isd.fnal.gov/fbs/FBS2/FBSNG_RelNotes.htm

FBSNG Scheduler

- Algorithms are based on the idea of dynamic priorities
- Controllable fair-share scheduling
 - Projects are assigned relative shares of farm resources
- Guaranteed scheduling
 - No infinite delays for big jobs
 - Will hold small jobs if necessary
- Customizable
 - Wide variety of configuration options
- See also http://www-isd.fnal.gov/fbs/FBS2/FBSNG Scheduler.htm

FBSNG API

- Job submission
 - FBSClient
 - FBSJobDesc
 - FBSSectionDesc
- Job monitoring and control
 - FBSJobInfo
 - FBSSectionInfo
 - FBSProcessInfo
- Resource management and monitoring
 - FBSQueueInfo
 - FBSNodeInfo
 - FBSNodeClassInfo
 - FBSProcessTypeInfo
- Python binding available
- UI, GUI are implemented in terms of API

FBSNG Requirements

- LSF no longer required
- On control node:
 - Bmgr daemon (non-root)
 - Logd daemon (optional, non-root)
- On each worker node:
 - Launcher (root)
 - Rstatd (optional)
- Software/hardware requirements:
 - Pyhton (99% FBSNG sources are python)
 - Tcl/Tk, Tkinter (for GUI)
 - FCSLIB (common Python module library)
 - Configuration file synchronized on all worker nodes (NFS works well)

FBSNG Project Status and Plans for Future

- FBSNG V1.0 (IRIX, Linux) released July 6th
- Soon to be available from Fermitools
- V1.0 is evaluation version
 - Solicit feedback (suggestions, criticism) from users
 - http://www-isd.fnal.gov/fbs/FBS2/fut_feat.html
 - Make plans based on such feedback